Matrix-Vector Products

Note 1: Equation (2) says that $A\mathbf{x}$ is a *linear combination* of the column vectors of A where the coefficients are determined by the components of the vector \mathbf{x} .

Example 1: Let
$$A = \begin{bmatrix} 1 \\ 2 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -3 \\ -1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Calculate $A\mathbf{x}$
 $A\bar{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + (-1) \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} + (1) \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix}$
 $= \begin{bmatrix} 1 + 1 + 0 \\ 2 - 2 - 3 \\ 4 + 1 + 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$

Example 2: Calculate
$$I_3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. What do you observe? $\mathbf{T}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix} = (1) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$$
Note: $\mathbf{T}_3 \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Proposition 1: For any vector \mathbf{x} in \mathbb{R}^n we have $I_n \mathbf{x} = \mathbf{x}$.

Example 3: Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ be the column vectors of I_4 .

$$\mathbf{I}_{\mathbf{Y}} = \begin{bmatrix} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4} \\ \mathbf{e}_{1} \mathbf{e}_{0} \\ \mathbf{e}_{1} \mathbf{e}_{0} \\ \mathbf{e}_{0} \mathbf{e}_{0} \\ \mathbf{e}_{0} \mathbf{e}_{0} \\ \mathbf{e}_{0} \mathbf{e}_{1} \\ \mathbf{e}_{0} \mathbf{e}_{0} \end{bmatrix}$$

T

Then
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix} \mathbf{e}_{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 9 & \varsigma & 7 & 8 \\ 9 & (\sigma & 1) & 12 \end{bmatrix} \begin{bmatrix} \sigma & \sigma & \sigma & \sigma \\ \sigma & \sigma & \sigma & \sigma \\ 0 & \sigma & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \sigma & \sigma & \sigma & \sigma \\ 0 & \sigma & \sigma &$$

Proposition 2 (Poole 3.1b): Suppose the $m \times n$ matrix A has column vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in \mathbb{R}^m . Then for any i in $1, \dots, n$ we have $A\mathbf{e}_i = \mathbf{v}_i$ (4)

where \mathbf{e}_i is the i^{th} column vector of I_n .

Example 4: Write the linear system given in matrix-vector form

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$
(8)

in vector form and equation form.

Equation Form

$$X_1 + 2x_2 + 3x_3 = 1$$

 $X_1 - X_2 - 2x_3 = -1$
 $2x_1 + x_2 + x_3 = -2$